AVK-Innovationspreis 2017
Fleischfressende Pflanze inspiriert Architektur
Freiburger Forscher erhalten den AVK-Innovationspreis 2017 für bionische Fassadenverschattung
Der dritte Platz des AVK-Innovationspreises 2017 in der Kategorie „Forschung/Wissenschaft“ geht an ein Team unter Beteiligung von Prof. Dr. Thomas Speck, Dr. Simon Poppinga und M.Sc. Anna Westermeier von der Plant Biomechanics Group am Botanischen Garten sowie vom Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte Technologien (FIT) der Universität Freiburg. Die beteiligten Arbeitsgruppen wurden unter mehr als 70 Bewerbungen für die Entwicklung der bionischen, gelenkfreien Fassadenverschattung „Flectofold“ nach dem Vorbild der fleischfressenden Wasserfalle (Aldrovanda vesiculosa) sowie der Streifenwanze (Graphosoma italicum) geehrt. Die Studie entstand in Kooperation mit Kolleginnen und Kollegen vom Institut für Tragkonstruktionen und Konstruktives Entwerfen (ITKE), vom Institut für Textil- und Fasertechnologien (ITFT), vom Institut für Baustatik und Baudynamik (IBB) (alle Universität Stuttgart), vom Institut für Evolution und Ökologie (Universität Tübingen), sowie von den Deutschen Instituten für Textil- und Faserforschung (DITF). Die AVK (Industrievereinigung Verstärkte Kunststoffe e. V. und AVK-TV GmbH) prämiert im Rahmen vom „International Composites Congress“ in Stuttgart herausragende Innovationen im Bereich Faserverstärkte Kunststoffe (FVK) / Composites. Besonderer Wert wird dabei auf das Thema Nachhaltigkeit gelegt.
Der Flectofold ist eine hinsichtlich Bewegungsprinzip und Materialstruktur biologisch inspirierte gelenklose Fassadenverschattung für doppelt gekrümmte, komplexe Außenfassaden. Als biologische Ideengeber wurden die fleischfressende Wasserfalle (Aldrovanda vesiculosa) und die Streifenwanze (Graphosoma italicum) herangezogen. Inspiration für den gelenkfreien und effizienten Bewegungsmechanismus des Flectofolds war die schnelle Fangbewegung von Aldrovanda, welche anhand von Hochgeschwindigkeitsaufnahmen analysiert wurde. Die Bewegung wurde in mehreren Schritten abstrahiert und als „curved-line-folding“-Prinzip in die Technik übertragen. Hier sind zwei steife Flügel und eine steife, elliptisch geformte Mittelrippe durch eine Biegezone mit geringerer Steifigkeit verbunden. Die Durchbiegung der Mittelrippe initiiert das Auf- und Zuklappen der Flügel. Mittels computergestützten Simulationen konnte gezeigt werden, dass der Radius der Mittelrippe die für die Bewegung notwendige Aktuierungsenergie und gleichzeitig die Stabilität unter Wind- und Schneelasten bestimmt. Beim Flectofold wurde diesbezüglich auf ein ausgewogenes Verhältnis geachtet. Die funktionelle Morphologie des Wanzenflügels, welche ein gelenkloses Falten ermöglicht, wurde mittels verschiedener mikroskopischer Methoden untersucht. Die Resultate gaben Aufschluss über mögliche Gestaltungsrichtlinien für den Laminataufbau von faltbaren Faserverbundkunststoffen.
Der Flectofold wurde initial als Fassadenverschattungssystem insbesondere für doppelt gekrümmte Außenfassaden konzipiert. Das Funktionsprinzip lässt sich prinzipiell aber überall in der Technik einsetzen, wo bewegliche und wartungsarme Klapplamellen oder Regler benötigt werden, wie sie etwa in Lüftungsklappen, Öffnungs- oder Schließklappen oder adaptiven Klappmechanismen für Luft- und Raumfahrttechnik vorkommen. In diesem Zusammenhang ist vor allem die Bewegungsverstärkung basierend auf dem „curved-line-folding“ interessant, bei der eine relativ geringe Verformung der Mittelrippe zu einer großen Bewegung der Flügel führt. Der Flectofold wird mit einem pneumatischen, textilen Kissen, das hinter der Mittelrippe liegt, aktuiert. Durch Aufbau von lediglich 0,3 bar Luftdruck im Kissen werden im Flectofold große Bewegungen realisiert, die mit keinem anderen heutigen technischen System erreicht werden können. Herkömmliche Verschattungssysteme bestehen im Gegensatz zum Flectofold aus mehreren Einzelteilen, die über mechanische Gelenke miteinander verbunden sind. Je komplexer die Krümmungen der Außenfassaden, desto mehr Verbindungselemente sind erforderlich. Die häufigste Versagensursache solcher Systeme ist mechanischer Abrieb in den Gelenken, wodurch die Dauerfestigkeit der Systeme herabgesetzt und Wartungen notwendig sind. Der Flectofold kommt ohne Gelenke aus, so dass das gesamte System störungsarm betrieben werden kann.
Preisträger:
Prof. Dr. Thomas Speck, Dr. Simon Poppinga & M.Sc. Anna Westermeier (Plant Biomechanics Group Freiburg / Botanischer Garten der Universität Freiburg), M.Sc. Larissa Born (ITFT Universität Stuttgart), Prof. Dr. Götz Gresser & Prof. Dr. Markus Milwich (Institut für Textil- und Verfahrenstechnik (ITV) Denkendorf), Prof. Dr. Manfred Bischoff & M.Sc. Renate Sachse & (IBB Universität Stuttgart), Prof. Dr. Jan Knippers, M.Sc. Axel Körner, M.Sc. Anja Mader, M.Sc. Saman Saffarian & Dipl.-Ing. Gundula Schieber & (ITKE Universität Stuttgart) und Prof. Dr. Oliver Betz & M.Sc. Paavo Bergmann (Universität Tübingen)
Kontakt:
Prof. Dr. Thomas Speck
Plant Biomechanics Group
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2875
E-Mail: thomas.speck@biologie.uni-freiburg.de